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Outline

• Einstein theories and equations of motion

• Exact solutions, classifications and techniques

• Global analysis: black rings

• Euclidean signature: gravitational instantons.

• Some general properties by energy conditions

• Regular black holes

We consider symmetric metric gµν = gνµ, and are not going to
deal with torsion.



Einstein Theory of Gravity(1915)

Gµν ≡ Rµν − 1
2Rgµν =

8πG

c4
Tµν

where Gµν is called Einstein tensor. Specifically, for the metric
ds2 = gµν(x)dxµdxν§ xµ = {t, x, y, z}

g ≡ det(gµν) = 1
24ε

µνρσεαβγδgµαgνβgργgσδ ,

gµα =
1

6g
εµνρσεαβγδgνβgργgσδ , gµλg

νλ = δνµ ,

Γρµν = 1
2g
ρλ(∂νgλµ + ∂µgλν − ∂λgµν) ,

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ ,
Rµν = Rρµρν , R = Rµµ .

εµρρσ is the totally-antisymmetric tensor density with ε0123 = 1

and εµνρσ = εµρρσ/
√
|g| is a tensor.

(Note that Riemann tensor depends on Γ, but not explicitly on
gµν.) Torsion free: Γρµν = Γρνµ. Also metricity: ∇µgνρ = 0.



Focus on four dimensions

Although we shall discuss Einstein gravity in general dimensions,
we shall focus on four dimensions. The theory seems to be just
about right only in four dimensions

• # of Riemann tensor components 1
12D

2(D2 − 1)

• # of Ricci tensor components 1
2D(D + 1)

• # of Weyl tensor components 1
12D

2(D2 − 1)− 1
2D(D + 1).

In higher dimensions, the Riemann tensor components become far
greater than the Ricci tensor components. In lower dimensions,
the theory becomes two degenerate.
Dim Riemann Ricci Weyl

1 0 0 0
2 1 1 0
3 6 6 0
4 20 10 10
5 50 15 35
6 105 21 84



Vacuum equations

In the vacuum, (assuming there is no vacuum energy,) we have
Tµν = 0, the equations become

Gµν = 0 , i.e. Rµν − 1
2Rgµν = 0 .

Taking the trace, for D 6= 2, we have R = 0 and hence

Rµν = 0 .

A vacuum solution is not the same as the vacuum, since the
source can be localized.

e.g. The spacetime of our Sun outside is the Kerr metric, which
is a vacuum solution to Einstein’s field equation.



Matter vs. Spacetime

We typically take the view that Einstein’s equation Gµν = Tµν as
how spacetime curves under a certain matter energy-momentum
tensor.

But this can be reversed as Tµν = Gµν, in that we can write any
spacetime metric, and there must be a certain Tµν.

However, we have reliable theories of matter fields, which give
constraints on the allowed Tµν.

These constraints can be summarized abstractly as a set of en-
ergy conditions on Tµν. This leads to some general properties on
the allowed spacetime.

We shall come back to this later.



Einstein-Hilbert action

Not all the equations of motion can be derived from an action,
based on the Hamilton’s action principle, but Einstein’s can!

I =
1

16π

∫
d4xL , L =

√
−gR .

(assumed Lorentzian signature here.) In Einstein’s theory of
gravity, gµν or gµν are treated as fundamental fields. Einstein
equation is Eµν = 0 where δL =

√
−gEµνδgµν + total derivatives.

Some useful Lemma

δg = ggµνδgνµ = −ggµνδgνµ , δ
√
−g = −1

2

√
−ggµνδgνµ ,

δΓρµν = 1
2g
ρλ(∇νδgλµ +∇µδgλν −∇λδgµν) ,

δRρσµν = ∇µ(δΓρνσ)−∇ν(δΓρµσ) ,
δRµν = δRρµρν = ∇ρ(δΓρνµ)−∇ν(δΓρρµ) .

Note that although Γρµν is not a tensor, but δΓρµν is.



Since R = gµνRµν, we have

δR = Rµνδg
µν + gµνδRµν

= Rµνδg
µν +∇σ(gµνδΓσνµ − gµσδΓρρµ)

≡Xσ

= Rµνδg
µν +∇σXσ

= Rµνδg
µν +

1
√
−g

∂σ(
√
−gXσ) .

Thus

δ(
√
−gR) =

√
−g(Rµν − 1

2Rgµν)︸ ︷︷ ︸
Gµν

δgµν +
√
−g∇σXσ︸ ︷︷ ︸

total derivative

(Gibbons-Hawking boundary term is needed for applying the bound-
ary condition in the Hamilton’s action principle. We shall be
sloppy here.)



Lagrangian and conserved currents

It took awhile for Einstein to realize that it should be Gµν rather
than Rµν that equals to Tµν, owing to the following identity

∇µRµν =
1

2
∇νR , −→ ∇µGµν = 0 .

This ensures that the conservation of energy-momentum tensor
∇µTµν = 0 is consistent with geometrical properties.

Such identity requires fluent knowledge on geometries and not
easy to generalize to more complicated theories, e.g., non-mimimal
coupling, or higher-derivative gravities.

Lagrangian formulation, on the other hand, makes the statement
trivial, by the virtual of Noether theorem.

(Exercise: demonstrate that in a general-covariant theory, the
quantity Eµν ≡ δL

δgµν must be conserved, i.e. ∇µEµν = 0.)



A short list of theories

Einstein-Maxwell theory

L =
√
−g(R−

1

4
F2) , F = dA , A = Aµdx

µ .

In other words, Fµν = ∂µAν − ∂νAµ and F2 = FµνFµν. Bianchi
identity of the Maxwell fields dA = 0 is automatically satisfied,
i.e. ∂[µFνρ] = 0.

Equations of motion

δAµ : ∇µFµν = 0 ,

δgµν : Gµν = 1
2(F2

µν − 1
4gµνF

2) ,

where F2
µν ≡ FµρFνρ. Note that in D = 4, the energy-momentum

tensor is traceless, indicating that the Maxwell field is conformal.



Einstein-Maxwell theory with Λ

L =
√
−g(R− 2Λ−

1

4
F2) .

Equations of motion

δA : ∇µFµν = 0 ,

δgµν : Gµν + Λgµν = 1
2(F2

µν − 1
4gµνF

2) .



Einstein-Proca theory with Λ

L =
√
−g(R− 2Λ−

1

4
F2 − 1

2m
2A2) , A2 = AµAµ

Equations of motion

δA : ∇µFµν = m2Aν ,

δgµν : Gµν + Λgµν = 1
2(F2

µν − 1
4gµνF

2)

+1
2m

2(AµAν − 1
2A

2gµν) .



Einstein-Scalar theory

Minimally-coupled scalar

L =
√
−g(R− 1

2(∂φ)2 − V (φ)) .

Equations of motion

δφ : �φ =
∂V

∂φ
,

δgµν : Gµν = 1
2(∂µφ∂νφ− 1

2(∂φ)2gµν)− 1
2V gµν .



Einstein-Maxwell-Dilaton theory

In string theory, the following theory is a common occurrence

L =
√
−g
(
R− 1

2(∂φ)2 − 1
4e
aφF2 − V (φ)

)
.

Equations of motion

δφ : �φ =
a

4
eaφF2 +

∂V

∂φ
,

δAµ : ∇µ(eaφFµν) = 0 ,

δgµν : Gµν = 1
2(∂µφ∂νφ− 1

2(∂φ)2gµν)− 1
2V gµν

+1
2e
aφ(F2

µν − 1
4gµνF

2) .

Note that all the vector A(1) = Aµdxµ can be generalized to an
n-form A(n) = Aµ1···Aµndx

µ1 ∧ · · · ∧ dxµn.

hep-th/9412184, hep-th/9508042, [1306.2386]



Einstein-Yang-Mills theory

L =
√
−g
(
R− 2Λ−

1

2g2
s
F aµνF

aµν
)
.

where the SU(2) Yang-Mills field strength is defined by:

F aµν = ∂µA
a
ν − ∂νAaµ + εabcAbµA

c
ν .

equations of motion:

∇µF aµν + εabcAbµF
cµν = 0 ,

Gµν + Λgµν =
1

g2
s

(gρσF aµρF
a
νσ −

1

4
F2gµν) .

(Here a, b, c etc are Yang-Mills group indices.)



Non-Minimally coupled scalars

L =
√
−g
(
κ0R− 1

2ξφ
2R− 1

2(∂φ)2 − V (φ)
)
.

κ0, ξ are constants. equations of motion:

�φ = ξφR+
dV

dφ
,

κ0Gµν = 1
2∂µφ∂νφ−

1
2gµν

(
1
2(∂φ)2 + V (φ)

)
+1

2ξ(φ
2Gµν + gµν�φ2 −∇µ∇νφ2) .



Higher-derivative gravities

L =
√
−g
(

(R− 2Λ0) + αR2 + β RµνR
µν

+γ
(
R2 − 4RµνR

µν +RµνρσR
µνρσ

))
.

equations of motion

0 = Rµν − 1
2gµνR+ Λ0gµν + 2αR(Rµν − 1

4Rgµν)
+(2α+ β)(gµν�−∇µ∇ν)R

+β�(Rµν − 1
2Rgµν) + 2β(Rµσνρ − 1

4gµνRσρ)R
σρ

+2γ
(
RRµν − 2RµσνρR

σρ +RµσρλRν
σρλ −RµρRνρ

)
−1

2γgµν
(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
.

In particular, α = 0 = β gives the Einstein-Gauss-Bonnet theory.

[1101.1971,1101.4009,1610.08519]



With non-minmially-coupled derivative matter

I =
1

16π

∫
dnx
√
−g L , L = κ(R− 2Λ)− 1

2(αgµν − γGµν)∂µχ∂νχ ,

equations of motion

0 = κ(Gµν + Λgµν)− 1
2α

(
∂µχ∂νχ− 1

2gµν(∂χ)2
)

−1
2γ

(
1
2∂µχ∂νχR− 2∂ρχ∂(µχRν)

ρ

−∂ρχ∂σχRµρνσ − (∇µ∇ρχ)(∇ν∇ρχ)

+(∇µ∇νχ)�χ+ 1
2Gµν(∂χ)2

−gµν
[
− 1

2(∇ρ∇σχ)(∇ρ∇σχ) + 1
2(�χ)2 − ∂ρχ∂σχRρσ

])
,

0 = ∇µ
(
(αgµν − γGµν)∇νχ

)
.

Horndeski gravity



What about fermions

Anti-commuting fermion fields are described not by complex num-
bers, but rather by the Grassmannian numbers.

At the linear level, such as Dirac equations, the distinction is
irrelevant.

However, the energy-momentum tensor is bilinear in fermionic
fields, and they cannot modify the curvature with real numbers
at the classical level.

One might consider semi-classical consideration, namely

Gµν = 〈Tµν〉 .
But this is not quite what Einstein wrote. (Personally, I do not
quite know what it means.)

Commuting fermions are fine; however, do we have any such
fields in real world?



Now solving equations

Einstein’s field equation is highly nonlinear. Even in four dimen-
sions, it is a set of nonlinear second-order differential equation
involving six functions (1

2(4×5)−4 = 6) of four variables (t, x, y, z).

At the first sight, it is hard to imagine to construct anything
nontrivial.

Trivial solutionµthe Minkowski metricµds2 = −dt2 +dx2 +dy2 +
dz2§i.e gµν are all constants, and hence the connections Γρµν,
Riemann tensor Rµνρσ, Ricci tensor Rµν and Ricci scalar R all
vanish"Einstein vacuum equation is automatically satisfied"

Note that if we write Minkowski space in spherically-symmetric
form, namely ds2 = −dt2 + dr2 + r2dΩ2, then all curvatures still
vanishes, but the connection Γ does not.



Linearized gravity and graviton

The general equations are hard to obtain, we can consider lin-
earized equations of motion. Consider vacuum Einstein equation
with a cosmological constant

Gµν + Λgµν = 0 .

The vacuum solution is (A)dS/Mink with

R̄µνρσ = Λ̃(ḡµρḡνσ − ḡµσḡρν) .

(Question: How Λ̃ is related to Λ?) Perform a small perturbation

gµν = ḡµν + hµν , =⇒ gµν = ḡµν − hµν +O(h2) .

Thus we can lower and raise the indices by ḡµν and ḡµν on the
linearized h terms.

The linearized equation becomes

GLµν = 0 ,



The linearized Einstein tensor around the (A)dS vacuum is given
by

GLµν = RLµν − 1
2ḡµνR

L −
2Λ

D − 2
hµν ,

RLµν =
1

2

(
∇̄σ∇̄µhνσ + ∇̄σ∇̄νhµσ − �̄hµν − ∇̄µ∇̄νh

)
,

RL = −�̄h+ ∇̄σ∇̄µhµσ −
2Λ

D − 2
h .

Taking the trace of GLµν = 0 yields RL = 0. Making a gauge
choice

∇̄µhµν = ∇̄νh .
It follows that

RL = −
2Λ

D − 2
h .

Thus the physical modes is traceless, h = 0 and hence also trans-
verse ∇̄µhµν = 0, which leads to (�−2/3Λ)hµν = 0. [1101.1971]

This leads to linearized graviton or gravitational wave with 2
degrees of freedom in four dimensions.

useful formula : [∇µ,∇ν]V ρσ = RρλµνV
λ
σ −RλσµνV ρλ .



But we are interested in exact, not approximate solutions!

Classification: Cohomogeneity

In this lecture, we shall try to classify solutions by their cohomo-
geneity number.

• cohomogeneity-0: homogeneous space or spacetime,
e.g. Minkowski vacua In a homoengeous space, any point can
be reached by a group transitive action from any other point.
Alternatively, there must exist a vielbein base such that all
curvature tensors are independent of coordinates.

• cohomogeneity-1: homogeneous after one coordinate is set
to be a constant, e.g. Schwarzschild black hole, FLRW mod-
els.

• cohomogeneity-n: homogeneous after n-coordinates are set
to be constants, e.g. Rotating black holes, Gibbons-Hawking
multiple instantons.



Vacua: cohomogeneity-0 or homogeneous

Maximally symmetric

• Minkowski: Rµνρσ = 0

• (A)dS: Rµνρσ = Λ̃(gµρgνσ − gµσgνρ).

Non-Maximally-symmetric

• Products of Maximally-symmetric spaces, e.g. AdS5 × S5

• Lifshitz spacetimes and their generalizations

• Schrödinger spacetimes and their generalization

• Squashed spheres and their generaizations.

• ...?



Lifshitz spacetimes

ds2 = `2
(
− r2zdt2 +

dr2

r2
+ r2dxidxi

)
,

The metric is homogeneous and invariant under the scaling

t→ λzt , xi → λxi , r → λ−1r .

i.e. scales differently in temporal and spatial directions. (c.f.
Schrödinger equation for a free particle.)

The easiest to construct is by the Einstein-Proca theory, with
A = qrzdt, Λ = 1

2(D − 1)(D − 2)g2 and

`2 =
(D − 2)z

m2
, m2 =

(D − 1)(D − 2)2g2z

z2 + (D − 3)z + (D − 2)2
,

q2 =
2(z − 1)(z2 + (D − 3)z + (D − 2)2)

(D − 1)(D − 2)g2z
.

[1310.8348]



Schrödinger solutions

The metric

ds2 = `2
(
− r2zdt2 +

dr2

r2
+ r2(−2dxdt+ dyidyi)

)
.

In Einstein-Proca theory, the ansatz is A = qrzdt. The solution
is [1310.8348]

` = g−1 , m2 = z(z +D − 3)g2 , q2 =
2(z − 1)

zg2
.

Both Lifshitz and Schrödinger solutions belong to the following
general homogeneous metrics

ds2 = dρ2 +
∑
µ,ν

ezµνρdxµdxνcµν ,

where cµν, zµν are constants. [1303.5781]

The self-interacting of Yang-Mills provides a natural source of
Lifshitz and Schrd̈oinger solutions: [1501.01727, 1501.05318]



Cohomogeneity-one solutions

• Most of cosmological models, e.g., FLRW, Bianchi-IX, etc,
ds2 = −dt2 + a(t)2dxidxi.

• Domain Walls, e.g. ds2 = dρ2 + a(ρ)2dxµdxνηµν.

• Spherically-symmetric and static, e.g., Schwarzschild black
hole, wormholes, solitons, etc.

• p-branes, S-branes, etc., (subjects in string theories.)

• pp-waves as infinitely-boosted black holes.

• ...



Spherically-symmetric and static

Schwarzschild (1916):

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2

f = 1−
2m

r
, dΩ2

2 = dθ2 + sin2 θdφ2

This is a vacuum solution Gµν = 0.

Asymptotic (r →∞) flat (Minkowski): f → 1 and
ds2 = −dt2 + dr2 + r2dΩ2

2

In high school, one is very much fascinated by the similarity
between Newton’s gravity F ∼ −m1m2/r

2 and Coulomb force
F ∼ q1q2/r

2.

The Schwarzschild metric makes the similarity an illusion.

Or does it?



Kerr-Schild Form

An interesting property:

−fdt2 +
dr2

f
= −f(dt2 −

dr2

f2
) = −f(dt+

dr

f
)(dt−

dr

f
)

Define du = dt+ dr
f , we have

ds2 = 2dudr − du2 + r2dΩ2
2 +

2m

r
du2

= −dt̃2 + dr2 + r2dΩ2
2 +

2m

r
(dt̃+ dr)2 ,

where u→ t̃+ r. In other words, a black hole is a linear pertur-
bation of the Minkowski spacetime.

For k = dt̃+ dr, then we have kµkµ = 0, i.e., it is a null vector.

The quantity 2m/r is analogous to the electric potential.

A relation between electromagnetic force and gravity force?



Double copy formalism

Consider the metric

gµν = ηµν + φkµkν ,

where k is a null geodesic congruence kµkµ = 0 = kµ∇µkν and φ
is a scalar.

Define a Maxwell field

Aµ = φkµ , Fµν = ∂µAν − ∂νAµ .
Then the Einstein’s field equation

Rµν = Tµν −
1

D − 2
gµνT ,

reduces to

∂νF
µν = Jµ , Jµ = ±

(
1

D − 2
δ
µ
0 T − T

µ
0

)
.

Double Kerr-Schild form [hep-th/0405061]

ds2 = ds̄2 + U(kMdx
M)2 + V (lMdx

M)2 ,

kMkM = lM lM = kM lM = 0 , kM∇̄MkN = lM∇M lN = 0 .



Schwarzschild-(A)dS

Schwarzschild black hole is asymptotic flat, but our universe has
a cosmological constant.

Maximal symmetric spacetime in Einstein theory is Minkowski

Maximal symmetric spacetime in Einstein theory with a cosmo-
logical constant is (Anti-)de Sitter or (A)dS.

Schwarzschild-(A)dS:

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2

f = 1− 1
3Λr2 −

2m

r

The cosmological constant in our universe is too small to be
testable within our solar system.



(A)dS black hole with different topologies?

Whilst asymptotic flat black hole can have only one topologies
in four dimensions, and limited topologies in higher dimensions,
(back to this point later.) In asymptotic AdS spaces, you can also
have tori or hyperbolic horizons. If one has already construct the
spherically solutions, it is rather straightforward to take a limit
to obtain general solutions. Start with

ds2 = −hdt2 +
dr2

f
+ r2dΩ2 ,

We let r = r̃/
√
k and hence dr2 = dr̃2/k. Define dΩ2 = kdΩ̃2.

Thus the metric becomes

ds2 = −hdt2 +
dr̃2

kf
+ r̃2dΩ̃2 ,

where the Ricci-tensor for the dΩ̃2 is R̃ij ∼ kg̃ij.



You cannot take k = 0 or k = −1 whilst still being a black hole for
asymptotically-flat black holes. For (A)dS black holes, however,
h ∼ r2 = r̃2/k ∼ f . Thus define h̃ = kh and f̃ = kf , t̃ = t/

√
k, we

have

ds2 = −h̃dt̃2 +
dr̃2

f̃
+ r̃2dΩ̃2

k .

Dropping the tilde in the solution, we get the metric is general
topologies with

h ∼ f = g2r2 + k + · · · .
This procedure can be generally done, without needing to solve
any equations of motion.

If the cosmological vanishes, i.e. g2 = 0, k has to be 1 or positive
for the solution to have the well-defined asymptotics.

It is a misnomer to say these black holes have different topolo-
gies, since traditionary, when we say black holes can only have
the sphere topology, we mean that their asymptotic infinity re-
mains either Minkowskian or global AdS. If one is allowed to
change the asymptotic, then even the Schwarzschild black hole
can have different topology since we can replace the dΩ2

2 metric
by any Einstein metric with positive cosmological constant and
the solution still satisfies Einstein’s equation.



Cohomogeneity-2 solutions

• Rotating black holes in D = 4

• (Spherically-symmetric) black hole formation

• A periodic array of Schwarzschild black holes (axial symmet-
ric). [hep-th/9609126]

• C-metrics, black ring, etc.

• ...?



Rotation on spacetime

From Newtonian gravity, the gravitational field created by the
Sun (assuming its spherically symmetric) is independent of its
rotation.

Einstein theory predicts that the rotation of the matter can drag
the spacetime around it.

This is an important difference between the two theories, which
provides an experimental test of the two theories.



Rotating Black Hole: Kerr Solution

Kerr metric (1963)µGµν = 0

ds2 = ρ2
(
dr2

∆r
+ dθ2

)
+

sin2 θ∆θ

ρ2

(
adt− (r2 + a2)dφ

)2

−
∆r

ρ2

(
dt− a sin2 θ dφ

)2
,

ρ2 = r2 + a2 cos2 θ , ∆r = r2 + a2 − 2mr

• Mass: M = m

• Angular momentum: J = ma

• J ≤M2

The metric is asymptotically flat.

t: time¶r:radial coord.¶θ: latitudinal [0, π]¶φ:longitudinal [0,2π)"



Kerr-(A)dS

Carter (1968):

ds2 = ρ2
(
dr2

∆r
+
dθ2

∆θ

)
+

sin2 θ∆θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2

−
∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

ρ2 = r2 + a2 cos2 θ , Ξ = 1+1
3Λa2

∆r = (r2 + a2)(1−1
3Λr2)− 2mr

∆θ = 1 + 1
3Λa2 cos2 θ



Generalize to higher dimensions

• Asymptotic Minkowski: Meyer and Perry (1986)

• Asymptotic (A)dS: D = 5 Hawking, Hunter and Robinson
(1998)

• Asymptotic (A)dS: Arbitrary D, hep-th/0404008,
hep-th/0409155.



How to construct: D = 4 example

Kerr-AdS4:

ds2 = ρ2
(
dr2

∆r
+
dθ2

∆θ

)
+

sin2 θ∆θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2

−
∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

ρ2 = r2 + a2 cos2 θ , Ξ = 1+1
3Λa2

∆r = (r2 + a2)(1−1
3Λr2)− 2mr

∆θ = 1 + 1
3Λa2 cos2 θ

First notice that Ξ is a constant and can be absorbed into φ; it
is currently so chosen that φ has period 2π from global analysis.



How to construct: D = 4 example

If we set m = 0, the solution becomes AdS4 in ellipsoidal coordi-
nates.

ds̄2 = ρ2
(
dr2

∆r
+
dθ2

∆θ

)
+

sin2 θ∆θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2

−
∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

ρ2 = r2 + a2 cos2 θ , Ξ = 1+1
3Λa2

∆r = (r2 + a2)(1−1
3Λr2)

∆θ = 1 + 1
3Λa2 cos2 θ

It might be somewhat strange that this complicated looking met-
ric is simply (A)dS4. (If Λ = 0, it is Minkowski spacetime.)



Coordinate transformation

Let Λ = −3/`2.

(r2 + a2) sin2 θ

Ξ
= ρ2 sin2 θ̃ ,

(1− `−2a2 cos2 θ)(1 + `−2r2)

Ξ
= 1 + `−2ρ2 ,

The metric becomes

ds2 = (1+`−2ρ2)dt2+
ρ2

1 + `−2ρ2
+ρ2

(
dθ̃2+sin2 θ̃ (dφ+`−2adt)2

)
.

AdS in rotating frame with angular velocity:

Ω∞ = −`−2a .



Lesson to be learned

If we write the AdS4 metric in the proper coordinates, turning the
vacuum AdS4 to rotating black hole is quite trivial. Of course,
this is only a retrospective knowledge. However, we can now
apply this method to the higher-dimensional construction.



Kerr-Shield form

The construction appears even more trivial in the Kerr-Shield
form

ds2 = ds̄2 + Uk2 , U =
−2mr

ρ2
,

k = kµdx
µ = dt− a sin2 θ

dφ

Ξ
−
ρ2dr

∆0
r
,

∆0
r is ∆r with m = 0. The mass parameter m appears in the

metric linearly!

ds2 = gµνdx
µdxν = ηµνdx

µdxν +
2m

U
(kµdx

µ)2 ,

k = kµdx
µ = dt+

r(xdx+ ydy) + a(xdy − ydx)

r2 + a2
+
zdz

r
,

and

U = r +
a2 z2

r3
,

where r is defined by

x2 + y2

r2 + a2
+
z2

r2
= 1 .



Comments on rotations

In flat space, the rotation generators are Lij = xi∂xj − xi∂xj.
(They form the SO(n) group.) They are thus rank-2 tensors,
which happen to be dual to vectors in three dimensional space.

Thus in the three-dimensional space, there can be no two or-
thogonal planes. There can only be one independent rotation in
D = 3 dimensions.

In the four-dimensional space (x1, x2, x3, x4), the plane (x1, x2) is
orthogonal to that of (x3, x4). Thus there can be two indepen-
dent orthogonal rotations in D = 4 + 1 spacetime.

In general, if the spacetime has dimensions D, there can be
N = [D − 1/2] orthogonal rotations, corresponding N number
of rotation parameters ai.



The Kerr metrics in general even D-dimensions (Myers-Perry):

k = kµdx
µ = dt+

n−1∑
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)
r2 + a2

i

+
zdz

r
,

with

U =
1

r

(
1−

n−1∑
i=1

a2
i (x2

i + y2
i )

(r2 + a2
i )2

) n−1∏
j=1

(r2 + a2
j ) ,

and
n−1∑
i=1

x2
i + y2

i

r2 + a2
i

+
z2

r2
= 1 .

For odd D, drop z term and U → 1/rU .



The Kerr-(A)dS metrics in D-dimensions: ds2 = ds̄2+2M
U (kµ dxµ)2 ,

where the de Sitter metric ds̄2, the null 1-form kµ, and the func-
tion U(r, µi) are given by

ds̄2 = −W (1− λ r2) dt2 + F dr2 +
N+ε∑
i=1

r2 + a2
i

1 + λa2
i

dµ2
i

+
N∑
i=1

r2 + a2
i

1 + λa2
i

µ2
i dφ

2
i +

λ

W (1− λ r2)

(N+ε∑
i=1

(r2 + a2
i )µi dµi

1 + λa2
i

)2
,

kµ dx
µ = F dr +W dt−

N∑
i=1

ai µ
2
i

1 + λa2
i

dφi ,

U = rε
N+ε∑
i=1

µ2
i

r2 + a2
i

N∏
j=1

(r2 + a2
j ) ,

where the functions W (µi) and F (r, µi) are defined to be

W ≡
N+ε∑
i=1

µ2
i

1 + λa2
i

, F ≡
1

1− λ r2

N+ε∑
i=1

r2 µ2
i

r2 + a2
i

.

hep-th/0404008, hep-th/0409155.



Black hole topology

Black hole topology describes the topology describe the black
hole horizon. In four dimensions, it was shown to be 2-sphere.
The spherically-symmetric and static Schwarzschild black hole
must has round 2-sphere as its horizon. Rotating Kerr black
holes is elliptic, but the topology remains 2-sphere.



New black topology in higher dimensions

In higher-dimensions, in addition to S3 sphere topology, black
hole can have other topologies as well, such as S2 × S1. Such a
black ring solution that is asymptotic to Mink5 was constructed
first by Emparan and Reall.
(Phys.Rev.Lett. 88 (2002) 101101)

How many do such black hole objects exist in higher dimensions?
How to classify them? It remains illusive.

We shall come back to this point later.



Kerr-AdS-NUT: Plebanski (1975)

Let u = a cos θ, the Kerr-AdS can be written as follows

ds2 = (x2 + u2)
(
dr2

∆r
+
du2

∆u

)
+

∆u

r2 + u2
(dt− r2dφ)2

−
∆r

r2 + u2
(dt+ u2dφ)2 ,

∆r = (a2 + r2)(1− 1
3Λr2)− 2mr

∆u = (a2 − u2)(1 + 1
3Λu2)− 2`r

• r and u are in the “equal” footing; the metric becomes more
elegant

• Introducing a “NUT” parameter `, which can be viewed as a
“magnetic” dual of the mass

• Exist naked closed time-like circles (CTC)



General Kerr-AdS-NUT in D

D = 2n:

ds2 =
n∑

µ=1

[
Uµ

Xµ
dx2
µ +

Xµ

Uµ
(Wµdt−

n−1∑
i=1

γiµdφ)2
]

Uµ =
∏′n
ν=1

(x2
ν − x2

µ) , Xµ = −(1− g2x2
µ)

n−1∏
k=1

(a2
k − x

2
µ)− 2Mµxµ

Wµ =
∏′n
ν=1

(1− g2x2
µ) , γiµ =

∏′n
ν=1

(a2
i − x

2
ν)

Analogous expression for D = 2n + 1. hep-th/0604125 N =
[1
2(D − 1)] rotations, 1 mass and (N − 1) NUT parameters.

The key is to solve
∑[D/2]
i µ2

i = 1 by

µ2
i =

∏n
α=1(a2

i − y
2
α)∏′n

k=1(a2
i − a

2
k)
.



Plebanski-Demianski (1976)

In D = 4, the Kerr-AdS-NUT solution (Plebanski) can have an
overall conformal factor:

ds̃2 =
1

(1− xy)2
ds2

Pleb

Here ds2
Pleb means the Plebanski-type of ansatz, not the Plebanski

metric. The functions X and Y in ds2
Pleb can be determined as

4’th order polynomials of x and y respectively.

This is the most general metric of the Bianchi D metrics in four
dimensions.

But we do not know yet how to generalize this to higher dimen-
sions.

So far there is only some progress in generalization to D = 5
without a cosmological constant, which we shall review.



New D = 5 metric

Rµν = −4λgµν:
Starting from the rotating black hole:

ds2
5 =

x− y
4X

dx2 +
y − x
4Y

dy2 +
X(dφ+ ydψ)2

x(x− y)
+
Y (dφ+ xdψ)2

y(y − x)

+
a0

xy

(
dφ+ (x+ y)dψ + xydt

)2

X = a0 + a1x+ a2x
2 − λx3 , Y = a0 + b1y + a2y

2 − λy3

The metric has a scaling symmetry:

x→ αx , y → αy

together with appropriate scaling of the parameters. This is anal-
ogous to the Plebanski metric, in which case, the scaling sym-
metry is broken by the Plebanski-Demianski generalization.

We find analogous generalization, provided that λ = 0.



New D = 5 Ricci-flat metric 0804.1152

Rµν = 0:

ds2
5 =

1

(1− xy)2

[
x− y
4X

dx2+
y − x
4Y

dy2+
X(dφ+ ydψ)2

x(x− y)
+
Y (dφ+ xdψ)2

y(y − x)

]

+
a0

xy

(
dφ+ (x+ y)dψ + xydt

)2

X = a0+a3x+a2x
2+a1x

3+a0x
4 , Y = a0+a1y+a2y

2+a3y
3+a0y

4

Make a change of coordinates x→ 1/x, t→ it, φ→ iφ and ψ → iψ,
we have

ds2 =
1

(x− y)2

[
x(1− xy)dx2

4G(x)
−
x(1− xy)dy2

4G(y)
−
G(x)(dφ+ ydψ)2

1− xy

+
xG(y)(dψ + xdφ)2

y(1− xy)

]
−
a0y

x

(
dt+

x

y
dφ+ (x+ y−1)dψ

)2

G(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a0ξ
4



Black-ring limit

Take a limit

x→ ε2x, y → ε2y, φ→ εφ, ψ → εψ, t→ ε−1t

a0 → ε2a0 a1 → a1 , a2 → ε−2a2, a3 → ε−4a3

with ε→ 0, we have the black ring metric

ds2 =
1

(x− y)2

[
xdx2

4G(x)
−

xdy2

4G(y)
−G(x)dφ2 +

xG(y)dψ2

y

]
−
a0y

x
(dt+ y−1dψ)2

with

G(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3

This metric of the black ring is somewhat simpler in the coordi-
nates and parametrization used in solution obtained originally by
Emparan and Reall, hep-th/0110260.

The global analysis of this black ring and the more general Ricci-
flat metric can be found in arXiv:0804.1152



Lesson learned

The generalization of the Plebankski metric to higher dimensions
has been done, but it does not give rise to anything particular in-
teresting since Plebanski metrics has typically naked CTC except
when reduced to the rotating black holes.

The generalization of the Plebanski-Demianski to higher dimen-
sions can be very fruitful. The D = 5 example contains the
Ricci-flat black ring solution.

If we only knows how to add the cosmological constant!

If we only knows how to generalize to D > 5!

Analytical solutions of black objects with Sn × Sm topology? It
is so tantalizing!!!



Global Analysis: Black Ring

The black ring is significant since its horizon geometry is S2×S1,
rather than the expected S3.

You might think S2 × S1 is easy since a direct product of D = 4
Schwarzschild black hole and a circle satisfies the Einstein equa-
tion in D = 5:

ds2
5 = −fdt2 +

dr2

f
+ r2dΩ2

2 + dψ2 , f = 1−
2M

r
.

Even though this metric’s horizon geometry is S2 × S1, we do
not call this a black ring, because its asymptotic spacetime is
Mink4×S1 rather than Mink5. Again, black objects with different
topologies should be discussed only in the context of the same
asymptotic region.

In order for the above metric to be asymptotic Mink5, ψ must
be a real line, in which case the horizon geometry is S2 × R, i.e.
black (open) string!



black ring: global analysis

ds2 =
1

(x− y)2

[
xdx2

4G(x)
−

xdy2

4G(y)
−G(x)dφ2 +

xG(y)dψ2

y

]
−
a0y

x
(dt+ y−1dψ)2

with

G(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3

It can be expressed as

G(ξ) = −µ2(ξ − ξ1)(ξ − ξ2)(ξ − ξ3) , a0 = µ2ξ1ξ2ξ3 .

The metric has a scaling symmetry (x, y) → α(x, y), implying
that we can set µ = 1. We therefore have three parameters left.



singularity and asymptotic flat region

The metric looks complicated, and not written in the form that
we are familiar. Where is the asymptotic region and where is the
singularity?

One way to find them out is by examining the curvature:

RµνρσRµνρσ =
24(x− y)4

x6

(
16ξ2

1ξ
2
2ξ

2
3 − 4 (ξ1 + ξ2 + ξ3)x4y

+2 (ξ2ξ3 + ξ1 (ξ2 + ξ3))x3(x− 2y) +
( (

3ξ2
2 + 10ξ3ξ2 + 3ξ2

3

)
ξ2

1

+10ξ2ξ3 (ξ2 + ξ3) ξ1 + 3ξ2
2ξ

2
3

)
x2 − 4ξ1ξ2ξ3x

2(2x− 3y)

+x4
(
3x2 − 4xy + 8y2

)
− 16ξ1ξ2ξ3 (ξ2ξ3 + ξ1 (ξ2 + ξ3))x

)
.

Flat region: x = y

Singularities: x = 0, x =∞, y =∞.

y = 0 is not a singularity.



Signature

ds2 =
1

(x− y)2

[
xdx2

4G(x)
−

xdy2

4G(y)
−G(x)dφ2 +

xG(y)dψ2

y

]
−
a0y

x
(dt+ y−1dψ)2

with

G(ξ) = −µ2(ξ − ξ1)(ξ − ξ2)(ξ − ξ3) , a0 = µ2ξ1ξ2ξ3 .

The scaling symmetry implies that we can set µ = 1. Near the
asymptotic region x ∼ y:

G(x) < 0, x < 0, y < 0, G(y) > 0 .

We thus select
ξ1 < ξ2 < 0 < ξ3

with

x ∈ [ξ1, ξ2] , y ∈ [ξ2,∞) .

i.e. x is the compact coordinate, analogous to θ; y is non-
compact, analogous to r.



Metric singularities

ds2 =
1

(x− y)2

[
xdx2

4G(x)
−

xdy2

4G(y)
−G(x)dφ2 +

xG(y)dψ2

y

]
−
a0y

x
(dt+ y−1dψ)2

We now look at the metric singularities (not curvature singulari-
ties) x→ ξ1, ξ2, ξ3and y → ξ1, ξ2, ξ3

y = 0 is neither a metric nor a curvature singularity:

gψψ = −
x2 (y − ξ2) (y − ξ3) + ξ1

(
x2 (ξ3 − y) + ξ2

(
x2 + ξ3(y − 2x)

))
x(x− y)2

.



Spacetime regions

𝜉1 𝜉3𝜉2
𝜉1 ≤ 𝑥 ≤ 𝜉2 𝜉2 ≤ 𝑦 <∞

x = ξ2 = y: asymptotically flat region

y = 0: ergo sphere

y = ξ3: event horizon

y =∞: singularity



Identifying the S2

ds2 =
1

(x− y)2

[(
xdx2

4G(x)
−G(x)dφ2

)
−

xdy2

4G(y)
+
xG(y)dψ2

y

]
−
a0y

x
(dt+ y−1dψ)2

Let ξ1 = −η2
1, ξ2 = −η2

2. Killing vector ∂/∂φ is degenerate at
x = ξ1 and x = ξ2, Normalising to unit Euclidean surface gravity,
the degenerate Killing vectors are, respectively,

`1 =
η1

(η2
1 − η

2
2)(ξ3 + η2

1)

∂

∂φ
, `2 =

η2

(η2
1 − η

2
2)(ξ3 + η2

2)

∂

∂φ
.

Since these must each generate 2π rotations, it follows that the
two prefactors must be equal, and hence we must require

ξ3 = η1η2 .

Now we have only two free parameters left.



Identifying the S1

The metric is degenerated also at y = ξ2. The degenerated
Killing vector

` = ∂ψ +
1

η2
2
∂t .

is periodic. In order to avoid having time involved in periodic
coordinates, we make a coordinate shift:

t→
t

(η1η2)3/2
+

ψ

η2
2
.

Now define (φ1, φ2) = (η1 − η2)(η1 + η2)2(ψ, φ), we have

`x=ξ1
=

∂

∂φ2
= `x=ξ2

, `y=ξ2
=

∂

∂φ1
,

all generate 2π period.

The two azimuthal angles are therefore (φ1, φ2).



Event horizon

The event horizon is located at y = ξ3, where G(ξ3) = 0. The
null Killing vector is

` =
∂

∂t
+ Ω1

∂

∂φ1
, Ω1 =

√
η2

(
η2

2 − η
2
1

)
√
η1

T =
1

2π
η2 (η1 + η2) , S =

π2

2η2(η2
1 − η

2
2)(η1 + η2)3

.

Near horizon geometry

ds2 = −
η2

1(
η2

1 − η
2
2

)
2x

(dφ1 + ω+dt)
2 +

1

(x− η1η2)2

[
dφ2

2

(
η2

1 + x
)

(x− η1η2)
(
η2

2 + x
)

(η1 − η2) 2 (η1 + η2) 4
−

xdx2

4
(
η2

1 + x
)

(x− η1η2)
(
η2

2 + x
)]

+
x

4η1η2(η1 + η2)2(x− η1η2)2
(dρ2 − κ2 ρ2dt2) , T = κ/(2π) .



Asymptotic infinity

The asymptotic infinite is located at x = ξ2 = y. To see it
specifically, we set define

√
ξ2 − x
y − x

=
(η1 + η2)

√
η1 − η2√

η2
r cos θ ,

√
y − ξ2

y − x
=

(η1 + η2)
√
η1 − η2√

η2
r sin θ .

The the r →∞ limit, we have

ds2 → −dt2 + dr2 + r2(dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2) .

It is indeed the Minkowski spacetime. The mass and angular
momentum can be read off from the usual Komar integration

M =
3π

8η2(η2
1 − η

2
2)(η1 + η2)

, Jφ2
= 0 ,

Jφ1
=

πη
3/2
1

4η
3/2
2 (η2

1 − η
2
2)2(η1 + η2)2

.

dM = TdS + Ωφ1
dJφ1

, M = 3
2(TS + Ωφ1

Jφ1
) .



Further application:
Euclideanization and Einstein-Sasaki manifolds

Let us turn our attention to compact Euclidean spaces. Although
Ricci-flat metrics can smoothly extend to a compact manifold, an
analytical solution is more or less inconceivable. This is because
it is hard to imagine to construct a metric with a Killing vector
Ki, which satisfies

−�Ki −RijKi = 0

Multiply by Ki and integrate over the manifold. For a compact
manifold, integration by parts on the first term gives no boundary
contribution, and hence one concludes∫

M
(|∇iKj|2 −RijKiKj) = 0

For the Ricci-flat compact metrics, it must be that ∇iKj point-
wise everywhere in the manifold. Leaving aside the trivial pos-
sibility that there are flat S1 factors, such a covariantlyconstant
vector will not exist. Therefore there can be no Killing vectors
in a non-flat Ricci-flat compact manifold.

However, if Rij = λgij with positive λ, metrics of compact spaces
can be analytically constructed, such as Sn.



Euclidean space with reduced holonomy: Gravitational In-
stanton

Let us consider cohomogeneity-one Ricc-flat space in four dimen-
sions with the ansatz

ds2
4 = dρ2 + a(ρ)2(dψ + cos θdφ)2 + b(ρ)2(dφ2 + sin2 θdφ2) .

For constant ρ, it describe a homogeneous squashed S3. This is
the most general ansatz that preserves the SU(2)×U(1) isometry
of the squashed S3. Rµν = 0 imply

0 =
a′′

a
+

2a′b′

ab
−
a2

2b4
,

0 =
b′′

b
+
b′2

b2
+
a′b′

ab
+

a2

2b4
−

1

b2
,

0 = −
a′′

a
−

2b′′

b
.

A prime is a derivative with respect to ρ.



Solving this set of equations is not necessarily simple. Further-
more, we have only two functions (a, b), but three equations; are
they consistent? Solving for (a′′, b′′) from the first and second
equations, and substituting it the third, we have

H =
4a′b′

ab
+

2b′2

b2
+

a2

2b4
−

2

b2
= 0 .

This is in fact the Hamiltonian constraint. It is easy to verify
that

H ′ = −
(

2a′

a
+

4b′

b

)
H .

Thus it is consistent to set the Hamiltonian to 0.



Lagrangian and Hamiltonian

Let us make a coordinate transformation dρ = ab2dη, so that the
metric is now

ds2
4 = a2b4dη2 + a2(dψ + cos θdφ)2 + b2(dφ2 + sin2 θdφ2) .

The Hamiltonian is H = T + V and the Lagrangian L = T − V ,
with

T =
4ȧḃ

ab
+

2ḃ2

b2
, V = 1

2a
2(a2 − 4b2) .

Here a dot is a derivative with respect to η. Denote T as

T = 1
2gijẋ

iẋj , xi = {a, b}, i = 1,2 ,

with

gij =

(
0 4

ab
4
ab

4
b2

)
, gij =

(
−1

4a
2 −1

4ab

−1
4ab 0

)
.

If there exists a function W , so that we can write the V as

V = −1
2g
ij∂W

∂xi
∂W

∂xj
.

Then the Lagrangian becomes

L = 1
2gij

(
ẋi − gik∂kW

)(
ẋj − gj`∂`W

)
.



This W is called superpotential. If it exists, then the equations
of motion reduce to a set of first-order equations

ẋi = gij∂jW .

For our system, the W indeed exists, e.g.

W = a2 + 2b2 .

This implies we have the first-order equations

a′ =
−a2 + 2b2

2b2
, b′ =

a

2b
.

Here a prime is a derivative with respect to ρ again. It is easy
to check that the above first-order equations solve the Einstein
equation Rµν = 0. This equation can be easily solved, leading to

ds2
4 =

dr2

U
+

1

4
r2U(dψ + cos θdφ)2 + 1

4r
2(dφ2 + sin2 θdφ2) .

U = 1−
a

r4
.

This is the Eguchi-Hanson instanton. (Question: there is an-
other superpotential in this system, that would give Taub-NUT
solution. Can you find it?)



Conifold and resolution

T1,1 Einstein-space in five dimensions

ds2
5 = 1

9σ
2 + 1

6dΩ2
2 + 1

6dΩ̃2
2 ,

with σ = dψ + cos θdφ + cos θ̃dφ̃. It is Einstein with Rij = 4gij.
Conifold is

ds2
6 = dr2 + r2ds2

5 ,

which is Ricci-flat, but with a singularity at r = 0. Resolution

ds2
6 =

r2 + 6a2

r2 + 9a2
dr2+

1

9

(
r2 + 9a2

r2 + 6a2

)
r2σ2+

1

6
r2dΩ2

2+
1

6
(r2+6a2)dΩ̃2 .

Resolution: r → 0, R4 × S2.

There is also resolution to give R2 × S2 × S2

and deformed conifold R3 × S3.



Einstein-Sasaki manifolds

T1,1 is an earlier known example of Einstein-Sasaki manifolds, its
cone gives the noncompact Ricci-flat Calabi-Yao metric.

Let the cosmological constant to be positive and the Kerr-AdS-
NUT solution can then extend smoothly onto some compact
manifold. In particular, if we further take some BPS limit such
that the metric admits Killing spinors, we obtain in odd dimen-
sions the Einstein-Sasaki spaces.

In D = 5, this leads to an infinite number of explicit and smooth
Einstein-Sasaki metrics, including the Y p,q (hep-th/0403002) and
Lpqr spaces (hep-th/0504225). They have very important appli-
cation in the AdS/CFT correspondence, in the studying of the
quiver gauge theory.

In even dimensions, the BPS limit will force the cosmological
constant to vanish, leading to non-compact CY metrics with at
most conical singularities (hep-th/0605222).



Summary so far

We have gone through large classes of explicit Einstein metrics
Rµν = Λgµν in diverse dimensions, focusing on rotating black
holes.

After 100 years, it is unlikely to find any new Einstein metrics in
four dimensions. (See ”Exact Solutions to Einstein’s Field Equa-
tions,” second edition. Authors Stephani, Kramer, MacCallum,
Hoenselaers and Herlt.)

However, there can still be exact solutions of intriguing black
objects with non-trivial topologies in higher dimensions.



Charged black holes

Einstein-Maxwell theoryµ

L =
√
−g(R− FµνFµν) , Fµν = ∂µAν − ∂νAµ .

Reissner-Nordström (RN)black holes

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 , f = 1−
2m

r
+
q2

r2
,

with A = q
rdt.

With a cosmological constant

f → −1
3Λr2 + 1−

2m

r
+
q2

r2
.

The black hole has two parameters, mass m and charge q.



Kerr-Newman AdS solution

Charged AdS rotating black hole in four dimensions has long been
known:

ds2 = ρ2
(
dr2

∆r
+
dθ2

∆θ

)
+

∆θ sin2 θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2

−
∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

A =
q r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)
+
p cos θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)
,

where,

ρ2 = r2 + a2 cos2 θ , ∆θ = 1 + 1
3Λa2 cos2 θ , Ξ = 1 + 1

3Λa2 ,

∆r = (r2 + a2)(1− 1
3Λr2)− 2mr + p2 + q2 .



Charged rotating black hole in higher dimensions

Although RN black hole, the charged static and spherically-symmetric
solutions to Einstein-Maxwell theory, can be easily generalized to
arbitrary higher dimensions, the exact solutions of rotating black
hole in this theory may not exist beyond four dimensions.



Supergravity can haveµµµa 5-D example

EM-gravity theory in D = 5:

L =
√
−g(R− 1

4F
2) .

EM-supergravity in D = 5

L =
√
−g(R− 1

4F
2) + 1

12
√

3
εµνρσλFµνFρσAλ .

EM-gauged supergravity in D = 5:

L =
√
−g(R− 2Λ− 1

4F
2) + 1

12
√

3
εµνρσλFµνFρσAλ .

Charged rotating black holes were constructed in D = 5 gauged
supergravities [hep-th/0506029, 1108.4159]



Solution-generating tech: Applying Glob-
al Symmetry of String Theory

A fact is that there is no known example of analytical charged
rotating black hole in Einstein-Maxwell theory beyond four di-
mensions.

A fact is that in supergravity, charged rotating black holes can
be constructed!

What’s the difference? Supergravity theories have additional
global symmetry in Kaluza-Klein reduction. One can generate
a new solution by applying global symmetry. This leads to a very
useful solution-generating technique.

A topic that I shall discuss in August School in North-East Uni-
versity in Nanjing.



Constraints from the energy conditions

We have so far looked at a large number of known solutions to
Einstein’s field equations, based on some specific fundamental
matter theories. We somehow get some general impressions such
as

• Black holes have singularities

• Gravity is attractive

But how general are such statements? Gravity can be repulsive
if the mass in the Schwarzschild black hole is negative.

In Einstein’s theory of gravity, any spacetime metric gµν is possi-
ble from Einstein’s equation Gµν = Tµν.

However, not all the Tµν are allowed based on our understanding
of matter theories.

Therefore the conditions on Tµν will give restrictions on the pos-
sible spacetime geometries.



Preliminary: energy conditions

In Einstein gravity, you can get any spacetime since

Gµν = 8πGTµν ,

unless you have some redlines that you wont cross, namely the
energy conditions on the Tµν.

For this talk, we shall focus on the spherically-symmetric and
static metrics, with

Tµν = diag{−ρ, p1, p2, p3} =


−ρ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3

 .



There can be various energy conditions:

• NEC: ρ+ pi ≥ 0, for all i = 1,2,3;

• WEC: NEC & ρ ≥ 0;

• DEC: NEC & ρ− pi ≥ 0, for all i = 1,2,3;

• SEC: NEC & ρ+ p1 + p2 + p3 ≥ 0;

• TEC: ρ− p1 − p2 − p3 ≥ 0 .

We thus have

DEC ⊃WEC ⊃ NEC , SEC ⊃ NEC ,

but DEC, SEC and TEC are pair-wise independent.

NEC is our ultimate redline.

Both the Schwarzschild and RN black holes satisfy all these en-
ergy conditions.



Examples: bouncing universe and wormholes

Bouncing cosmology ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2)

ρ = −Gtt , p = Gxx , ρ+ p =
2ȧ

a2
−

2ä

a
.

Bouncing (ȧ = 0, ä > 0); therefore it violates the NEC; but it is
ok for crunching (ȧ = 0, ä < 0).

Wormhole: ds2 = −dt2 + dr2 + (r2 + a2)dΩ2
2

ρ = −Gtt , pr = Grr , ρ+ pr = −
2a2(

a2 + r2
)2 .

It violates the NEC.



Penrose entropy bound

In the 70’s, Penrose proposed a rather simple looking inequality

2MADM ≥

√
A[σ]

4π
,

where A[σ] is the minimal area enclosing the apparent horizon σ.

In my view, the statement is only becoming significant for black
holes.

Proof becomes simpler for assuming the spherical symmetry:

• Static black holes: the sufficient condition is WEC. [Bray
(2001); Huisken, Ilmanen (2001)]

• Dynamic black holes: DEC. [Hayward,gr-qc/9408002]

The belief is that Schwarzschild black hole is the only one that
saturates the bound.

Why is it important? For stationary black holes, A = 4S.

The Penrose inequality then becomes an entropy bound for a
system of given total energy.



Spherically-symmetric and static

Spherically-symmetric and static metric:

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2dΩ2.

The Einstein field equation Gµν = 8πTµν is solved by

f ′ =
1− 8πr2ρ− f(r)

r
, χ′ = −

8πr(ρ+ pr)

f
,

p′r =
ρ− 3pr + 4pT

2r
−

(ρ+ pr)(1 + 8πprr2)

2rf
,

where pr = p1 and pT = p2 = p3. Asymptotic boundary condi-
tions:

f(r) = 1−
2M

r
+ · · · , lim

r→∞ r χ(r) = 0 .

Immediately, the NEC implies that χ ≥ 0 and e−χ < 1.

If r+ is the horizon f(r+) = 0, we have

T =
e−

1
2χf ′

4π

∣∣∣∣
r=r+

, S = πr2
+ .



Quasi-local mass

Hawking-Geroch mass

m(r) =
r

2
(1− f) , m(r+) = 1

2r+ , m(∞) = M .

Using the three equations of motion, it is easy to establish

m′ = 4πr2ρ .

Thus if imposing WEC, ρ ≥ 0, then m(r) is a monotonically
nondecreasing function, and hence

m(∞) ≥ m(r+) , 2M ≥ r+ =

√
S

π
.

So for the spherically-symmetric and static black holes, the Pen-
rose inequality is extremely easy to prove and the sufficient con-
dition is WEC.



Equality vs Inequality

A black hole is typically specified by two sets of quantities

• asymptotic quantities: M,J,Q, etc.

• horizon data: T, S,Ω+,Φ+, etc.

This can leads to equalities between

• Differential: the first law dM = TdS + Ω+dJ + Φ+dQ+ · · ·

• Algebraic: the Smarr relation M = 2TS+ 2Ω+J + Φ+Q+ · · ·

The Penrose inequality thus estimates two purely geometric quan-
tities: one at asymptotic infinity and one on the horizon

2M ≥
√
S

π
.

But geometric quantities involves (M,Ω, J, T, S). Therefore, there
should be some inequalities associated with these geometric quan-
tities under the some general energy conditions.



Bounds on the temperature

Based on various energy conditions, we find for static and spher-
ically symmetric black holes that are asymptotic flat, there is a
bound on temperature√

1

π S
−
M

S
≤ 2T ≤

3M

S
−
√

1

πS
.

Hossein Khodabakhshi will give a detail proof of this on Wednes-
day afternoon.



Exact scalar hairy black holes: engineering a scalar potential

Minimally-coupled scalar

L =
√
−g(R− 1

2(∂φ)2 − V (φ)) .

Equations of motion

δφ : �φ =
∂V

∂φ
,

δgµν : Gµν = 1
2(∂µφ∂νφ− 1

2(∂φ)2gµν)− 1
2V gµν .



“No-go theorem?”

There is a rumour of no-go theorem about scalar black holes.
This is in fact the easiest no-go theorem to get around in anyone’s
life. Let us consider the minimally-coupled scalar, whose equation
of motion is

�φ =
dV

dφ
,

where V is the scalar potential. Assuming a static black hole,
with the most general metric

ds2 = −λ2dt2 + gijdx
idxj .

where λ and gij are functions of x. Multiplying the scalar equation
with φ and integrating over the spatial section, we have∫

Di(λφD
iφ)− λDiφDiφ− φ

dV

dφ
= 0 ,

Thus we must have

φ
dV

dφ
≤ 0 ,

which cannot be satisfied by a free scalar. But any scalar with
concave potential can evade this no-go theorem.



Ansatz and eoms

Spherically-symmetric and static

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2dΩ2

n−2 , φ = φ(r) ,

equations of motion [1408.1514]

h′′

h
−
h′2

2h2
+
f ′h′

2fh
+

(n− 3)h′

rh
−
f ′

rf
−

2(n− 3)(f − 1)

r2f
= 0 ,

φ′2 =
(n− 2)(fh′ − hf ′)

rfh
,

fh′′

h
−
fh′2

2h2
+
f ′h′

2h
+

(n− 1)fh′

rh
+
f ′

r

+
2(n− 3)(f − 1)

r2
+

4V

n− 2
= 0 .

Note that V = V (ϕ(r)). All the above equations are Einstein,
and the scalar equation is automatically satisfied.



For a random given scalar potential V (φ), it is unlikely to have
exact solutions. However, if we do not care the detail of V (φ),
we can treat V (φ) as an unknown variable to be solved.

The first two equations does not involve V , and hence we can
solve (h, f) after making a suitable ansatz for φ such as φ = q1/r.
If this can be done indeed, we can then solve for V = V (r) from
the third equation, and convert back to V = V (φ).

This procedure was spelled out in detail in [1204.2720, 1308.1693,
1312.5374]. It is important to note that the parameter mass in
the metric should not appear explicitly in V = V (φ); otherwise,
the construction is not valid.



Reverse engineering: NLED

Nonlinear electrodynamics

L =
√
−gf(F2) , F2 = FµνFµν , F = dA .

Maxwell theory f = −F2. The variation of the Maxwell potential
Aµ gives

∇µ(ϕFµν) = 0 , ϕ(F2) = f ′(F2) .

The energy-momentum tensor comes from the variation of the
metric gµν is

Tµν = 1
2

(
− 4ϕF2

µν + gµνf(F2)
)
.

Einstein-NLED:

L =
√
−g
(
R+ f(F2)

)
.



Spherically-symmetric and static metrics

In four dimensions, spherically-symmetric and static metrics can
be sourced by both electric and magnetic charges [Bronnikov,gr-
qc/0006014]

ds2 = −h(r)e−σ(r)dt2 +
dr2

h(r)
+ r2(dθ2 + sin2 θdφ2),

F = ψ(r)dt ∧ dr + p sin θdθ ∧ dφ .
Einstein equations:

−Gtt +Gr
r = −

h

r
σ′ = 0 , → σ = 0 .

Thus

F2 = −2ψ2 +
2p2

r4
, ψ =

q

ϕr2
, ϕ(F2) = f ′(F2) .

Gt
t +Gr

r =
2(rh′+ h− 1)

r2
= f(F2) + 4ϕψ2.

Note that the right-hand side is independent of h.



Magnetic monopoles and reverse engineering technique

For magnetic solutions, the complete set of equations reduces to

2(rh′+ h− 1)

r2
= f(F2) , F2 =

2p2

r4
.

Reverse engineering technique: [Fan, Wang 1610.02636]

f(F2) =
2(rh′+ h− 1)

r2

∣∣∣∣
r→(2p2

F2 )
1
4
.

This shows that any special static metric with gttgrr = −1 can
be viewed as a magnetic monopole of certain NLED.



Regular black holes

Penrose’s singularity theorem actually does not say much about
the inside of the event horizon of either a static or stationary
black hole. [Hawking, Ellis; Y. Choquet-Bruhat; Senovilla, Garfinkle]

There is no proof under SEC of non-existence of such regular
black holes, but there is no known counter example either.

Explicit examples have been constructed by relaxing the SEC,
e.g. Bardeen, Hayward, and they satisfy WEC.

The first known example of regular black holes was perhaps
sourced by the quasi-topological electromagnetism under spe-
cial limits, but I am not quite so sure. [Liu, Mai, Li, Lü, 1907.10876;
Cisterna,Giribet,Oliva, Pallikaris, 2004.05474]

Recently there is a review paper on regular black holes, which
contain an extensive list of references. [Lan, Yang, Guo, Miao, 2303.11696]
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Spherically-symmetric and static metrics

I shall discuss only the spherically-symmetric and static solutions.

The most general class:

ds2 = −h(r)e−σ(r)dt2 +
dr2

h(r)
+ r2(dθ2 + sin2 θdφ2) ,

The special class gttgrr = −1:

ds2 = −h(r)dt2 +
dr2

h(r)
+ r2(dθ2 + sin2 θdφ2) ,

The curvature singularity typically resides at r = 0. To avoid,
one may try

• wormhole [Ellis]

• black bounce [Simpson, Visser, 1812.07114]

• dark wormhole that connects to dS spacetime
[Geng, Lü, 1511.03681]

All violates the NEC in the frame work of Einstein gravity



A regular star-like core

Our Sun is regular and its core has constant gtt and grr at the
center (ignoring rotation):

h = 1+a2r
2 +a3r

3 + · · · , he−σ = b0 +b2r
2 +b3r

3 + · · · , b0 > 0 .

The SEC and DEC conditions imply that

SEC : b2 > max{0, a2b0} ;
DEC : a2 < 0 , a2b0 < b2 < −2a2b0 .

However for special static metrics:

a2 < 0→ dS core; a2 = 0→Mink core; a2 > 0→ AdS core.

The WEC or DEC requires a dS core with a2 < 0, but the SEC
requires an AdS core with a2 > 0.

If the core is Minkowski with a2 = 0, the same argument proceeds
with a3, and so on.

A regular core of a special static metric does not necessarily
violate either DEC or SEC, but it does violate WEC ⊕ SEC.
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Something weird about regular special static core

With gttgrr = −1, the regular core implies that the time ticking
rate at the core is the same as that at the asymptotic infinity.

This is counterintuitive since we would expect that there is grav-
itational time dilation at the center of our Sun.

We shall prove later that such a regular metric with flat asymp-
totic infinity will necessarily violate SEC.



Well-known examples

Both Bardeen and Hayward metrics are special static with

Bardeen : h = 1−
2Mr2

(r2 + g2)
3
2

,

Hayward : h = 1−
2Mr2

r3 + g3
,

Both violate DEC and SEC, but satisfy WEC. Both have dS core.



Regular metrics are fine-tuned objects

Let us consider an example, the Bardeen metric, which is a so-
lution to Einstein’s equation

−Gtt = −
rh′+ h− 1

r
= ρ =

6g2Mcrr(
g2 + r2

)5/2
.

The most general solution is

h = 1− 2(M−Mcr)
r − 2Mcrr2(

g2+r2
)3/2 .

The regular solution arises as M = Mcr.

M
cr=1.1

M
cr=1.299

M
cr=1.5

2 4 6 8 10 12 14
r

-0.2

0.2

0.4

0.6

0.8

1.0

h

M=1.02Mcr ,Mcr=1.2

M=1.1 Mcr ,Mcr=1.2

M=1.2 Mcr ,Mcr=1.2

M=0.9 Mcr ,Mcr=2

2 4 6 8 10
r

-1.0

-0.5

0.5

1.0

1.5

h



Regular black holes as magnetic monopoles

Both Bardeen and Hayward metrics have gttgrr = −1. Any such a
metric can be viewed as a magnetic monopole of certain f(F2).
Therefore

Bardeen : h = 1−
2Mr2

(r2 + g2)
3
2

,→ f =
1

α

(αF2)
5
4(

1 +
√
αF2

)5
2

,

Hayward : h = 1−
2Mr2

r3 + g3
,→ f =

1

α

(αF2)
3
2(

1 + (αF2)
3
4
)2 .

[Ayon-Beato, Garcia, gr-qc/0009077; Fan, Wang 1610.02636

But the result is disappointing because of the fractional powers
acting directly on F2.



Regular magnetic monopoles from analytic f(F2)

For magnetic monopoles, F2 = 2p2/r4, we therefore require
f(0) = 0 for asymptotic flatness, and f(∞) =finite for a reg-
ular core. We also require that in the weak-field limit:

f = −F2 + α1(F2)2 + α2(F2)3 + · · · .
Examples satisfy DEC include:

f =
1

να

(
1

(1 + αF2)ν
− 1

)
, f = −

F2

(1 + α(F2)µ)ν
,

h = 1−
2M

r
+

r2

6να

(
2F1[−3

4, ν; 1
4;−α2p2

r4 ]− 1
)
,

h = 1−
2M

r
+
p2

r22F1[ 1
4µ, ν; 1 + 1

4µ;−α(2p2

r4 )µ] .

f =
1

2α
(e−2αF2

− 1) , h = 1−
2µ

r
+

r2

48α

(
E7

4
(
4αp2

r4
)− 4

)
.

Minkoski core:

f =
1

2α
(e−2αF2

− 1)e−2αF2
.



Geodesic Completeness

Compare

Bardeen : h = 1−
2Mr2

(r2 + g2)
3
2

,

Hayward : h = 1−
2Mr2

r3 + g3
,

Both have dS core at r = 0. But recent work shows that Hayward
is not regular; it has singularity at r = −g, and the dS core is not
geodesically complete. [Zhou, Modesto, 2208.02557]

Regular metrics constructed from our analytic f(F2) are guaran-
teed that h(r) is an even function of r:

h(−r) = h(r) .

The minus r region is identical to the positive r region, and hence
can be identified so that the geodesic is complete in r ∈ (0,∞).
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No-Go theorems

All our examples satisfy the DEC, but violate SEC. We now show
that

• regular special static metrics must violate SEC;

• such metrics with Minkowski core must violate NEC.

We have seen that special static metrics must be able to do
reverse engineering, with

ρ = −pr = −1
2f(χ) , pT = 1

2f(χ)− χf ′(χ) , χ =
2p2

r4
> 0 .



The SEC requires

ρ+ pT = −χf ′(χ) ≥ 0 , pT = 1
2f(χ)− χf ′(χ) ≥ 0 .

The asymptotic flatness at large r requires f(0) = 0 and regular-
ity at r = 0 requires that f(∞) be a constant. In this case χf ′(χ)
must vanish as χ→∞.

Since f ′(χ) must be negative due to the NEC, f(∞) must be a
negative constant, indicating that the core is dS-like. Thus, the
strong energy condition must be violated at the core.

In order to have a Minkowski core, we must have f(∞) = 0. Thus
for non-vanishing f , there must be a minimum of f(χ) and hence
we must also have f ′(χ) > 0 at a certain spacetime region. This
immediately leads to a violation of the NEC in the transverse
direction.

The no-go theorems do not apply to the general static metrics.

2303.16924



BUT

• all the examples are magnetically charged.

• F2 = 2p2/r4 is not regular at the core. For a purist, this is
not acceptable, even though the metric is regular.

• Direct construction of electrically-charged regular black holes
is not easy, and no-go theorems were claimed. [Bronnikov,gr-
qc/0006014; Bokulić, Smolić, Jurić, 2206.07064]

But the Maxwell equation is

∇µ(ϕFµν) = 0 , ϕ = f ′(F2) .

It suggests a dual field strength G = dB such that

ϕF = ∗G , → ϕ2F2 = −G2 .

But even if we can solve F2 in terms of G2, we cannot simply
substitute it into the Lagrangian f(F2) to get its dual theory.



Scalar-vector and EM duality

L =
√
−gf(F2) ⇔ L =

√
−g(−φ2F2 − V (φ)) ,

where

φ2 = −f ′(χ) , V = χf ′(χ)− f(χ) .

Examples:

f = −
F2

(1 + (αF2)n)
1
n

, ↔ V =
1

α

(
1− φ

2n
n+1

)n+1
n
,

f =
1

να

(
1

(1 + αF2)ν
− 1

)
, ↔ V =

1

αν

(
1 + νφ2 − (ν + 1)φ

2ν
ν+1

)
,

f =
1

2α
(e−2αF2

− 1) , ↔ V =
1

2α
(1− φ2 + φ2 logφ2) .

EM duality:

L =
√
−g
(
− φ2F2 − V (φ)

)
↔ L =

√
−g
(
− φ−2G2 − V (φ)

)
.



Regular electrically-charged black holes

Consider the simplest example of a magnetic monopole:

f = −
F2

1 + αF2
, ↔ V =

1

α
(φ− 1)2 ,

h = 1−
2M

r
+
p2

r2 2F1[1
4,1; 5

4;−
2αp2

r4
] .

Metric can be regular, but F2 = 2p2/r4 diverges at the r = 0
core.

The same metric can be sourced by the electric field G of its dual
theory, with

G2 = −
F2

(1 + αF2)4
=

2p2r12(
2αp2 + r4

)4 ,

which is clearly regular from r = 0 all the way to r =∞.

“More” regular than the magnetic monopole.



EM duality symmetry

Maxwell theory is self-dual in four dimensions, but the general
f(F2) is clearly not. Perturbatively in the weak-field limit, we
find

L =
√
−g
(
− F2 + α(F2)2 + β(F2)3 + · · ·

)
,

is dual to

L =
√
−g
(
−G2 + α(G2)2 − (β + 4α2)(G2)3 + · · ·

)
.

In general, the f(F2) is self-dual, provided that the scalar poten-
tial its scalar-vector theory

L =
√
−g
(
− φ2F2 − V (φ)

)
.

has the property that V (φ) = V (φ−1).

EM self-dual NLED theories

Two well-known examples: Maxwell and BI theories.



Example 1:[Bronnikov 1708.08125]

V =
1

α
(φ2 + φ−2 − 2) , → f =

2

α

(
1−

√
1 + αF2) .

h = 1−
2M

r
+

r2

3α

(
1− F1

(
−

3

4
;−

1

2
,−

1

2
;

1

4
;−

2p2α

r4
,−

2q2α

r4

))
.

Example 2:

V =
1

2α
− α(φ2 + φ−2)−1 , →

f =
1

8α

√1 +
√

1 + 8αF2
(

3−
√

1 + 8αF2
)3/2

− 4

,
h = 1−

2M

r
+
p2 + q2

r2
−

2α
(
p2 − q2

)2

5r6

+
8α2

(
p2 − q2

)2 (
p2 + q2

)
9r10

+O(r−11).

Example 3:

f =
24

α
−

8
√

2

α
(u+

1

u
) , u =

√
1 +

√
1 + αF2.



Conclusions on regular black holes from NLED

• Illustrated that regular black holes are all fine-tuned objects.

• Established two no-go theorems on regular special static met-
rics (gttgrr = −1)

– it must violate the SEC
– such a metric with Minkowski core must violate the NEC

• Obtained regular metrics as magnetic monopoles from ana-
lytic f(F2), but F2 = 2p2/r4 diverges at the r = 0 core.

• Developed a formalism to perform electromagnetic duality on
f(F2)

– Obtained regular electrically-charged solutions with finite
F2 everywhere.

– Obtained two new explicit examples of self-dual f(F2) the-
ories.

• Studied properties of repulson stars and black holes.



Summary
– Einstein theories and equations of motion

– Exact solutions, classifications and techniques

– Global analysis: black rings

– Euclidean signature: gravitational instantons.

– Some general properties by energy conditions

– Regular black holes


